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FINAL FOCUSING OF INTENSE ION BEAMS WITH RADIALLY
NONUNIFORM CURRENT DENSITY Z-DISCHARGES

I. IIrrIODcTIoU

The Advanced Pulse Experiment (APEX Project) at Sandia

National Laboratories will test several concepts crucial to the

success of light ion beam inertial confinement fusion'. As

currently envisioned, the experiment will employ z-discharge

channel transport of intense ion beams from the accelerator to

the target. Previous analyses of ion beam transport in z-

discharge plasma channels indicate that in order to avoid many m'f

the effects that could degrade the beam quality, the beam should

be transported in a large radius (2 - 3 cm) channel2 . Because of

the mismatch betveen the target radius (-0.5 cm) and the beam

radius after transport in a large radius channel, some method of

final focusing must be used to reduce the ion beam radius.

A proposed method for final focusing is to have the ion

beam pass from the long (3-10 m), lov current (-50 kA) z-

discharge transport channel directly into a short (-5 cm), high

current (-500 kA)*z-discharge3 . The sudden increase in magnetic

field strength causes the ion beam to pinch inward. By fixing

the length of the focusing cell to be one eighth of a beam ion

betatron wavelength, this pinching effect allows the ion beam to

come to a focus at a -',ort distance (-5 cm) downstream from the

focusing cell exit. This method of focusing is referred to as

one-eighth betatron wavelength focusing, and has been referred to

in the past as final Locusing.

A previous analysis of the one-eighth betatron wavelength

focusing method predicted the spotsize, the focal length, and the

radial beam number density profile at the focal plane3'4 . The

spotsize, or equivalently, the radial beam compression ratio was

predicted to be
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(rfoc/r, 2  2 /(1 R)

where rfoc is the radius of the beam at the focal plane, rc is

the radius of the transport channel and focusing cell, and R is

the ratio of the focusing cell discharge current, If, to the

transport channel discharge current, I c . The focal length, that

is, the distance between the exit of the focusing cell and the

focal plane, was predicted to be

vhere A is the betat-ron wavelength of a beam ion in the focusing

cell. This analysis was based on the assumption that the

discharge current density in the focusing cell was uniformly

distributed within the radius of the discharge.

A new analysis has been performed to determine how the

spotsize and focal length of the focusing cell change when the

discharge current density distribution Is not uniform. For this

analysis, a model azimuthal magnetic field distribution of the

form

21 f (r

c
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is used, where If is the discharge current of the final focusing

cell and c is the speed of ligh The case with N = 1

corresponds to a uniform discharge current density, and will be

referred to as the ideal distribution. The reason for studying

different magnetic field profiles is that it may not always be

possible to obtain rhe ideal magnetic field distribution in an

experiment. For example, in beam transport experiments at the

Naval Research Laboratory, Be profiles in the transport channel
2 5approximately of the form (r/rc) have been observed

Theoretical models of the time-dependent diffusion of the

magnetic field into a z-discharge plasma also indicate that at

early times in the development of the discharge, the azimuthal

magnetic field has a radial profile that may be approximately

described Eq. (3), where larger values of N correspond to earlier

times in the development of the discharge. To interpret the

results of beam focusing experiments, it will be valuable to have

a prediction of the spotsize and focal length of nonideal

focusing cells.

In Section II of this paper, the general method used for

predicting the spotsize and focal length of a focusing cell is

described. In Section III, the equations of motion for an ion in
N

an r magnetic field distribution are solved using a Lie

transform technique, and are applied to the method described in

Section II to give the predictions of spotsize and focal length.

Finally, in Section IV these predictions are compared with the

results of numerical simulations of ion beam focusing.
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II. The Theoretical Basis for the Prediction of the Spotsize and

the Focal Length

The spotsize and the focal length that characterize the

focusing properties of the final focusing cell can be predicted

on the basis of the manner in which that focusing cell alters the

radial phase space distribution of the ion beam as it passes

through the cell. In this Section the relation between the ion

beam radial phase space distribution, the spotsize and the focal

length will be developed. This discussion will be based on the

assumptions that the beam is composed of monoenergetic ions with

zero angular momentum, that the beam propagates in a fully

current and charge neutralized mode, and that the beam is

produced by a time-independent source.

Under the assumptions noted above, the propagation of the

beam can be fully characterized by a description of its radial

phase space distribution at any given location along the

propagation axis, and this description can be made on the basis

of the single particle motions of a beam ion in the magnetic

field structure of the transport channel and of the final

focusing cell. It will be assumed that in the transport channel,

the distribution of the magnetic field is given by the ideal

distribution, i.e. Be(r) - (2Ic/crc)x(r/rc). In this azimuthal

magnetic field structure, the trajectory of a beam ion is a

periodic, approximately sinusoidal trajectory known as a betatron

orbit. The betatron orbit can be understood as a grad-B drift.

A beam ion injected parallel to the channel axis at the channel

radius feels the full strength of the magnetic field and begins

to execute a gyromotion that moves the ion both down the length

of the channel and in toward the channel axis. As the ion moves

inward, it feels a weaker magnetic field so that, at that

instant, the ion is on a gyro-orbit with a radius of curvature

somewhat larger than what it was at the channel entrance. When

4



the ion reaches the channel axis, the magnetic field strength is

zero so that the radius of curvature of the gyro-orbit is

infinite. The momentum of the ion carries it across the channel

axis into a region of increasing magnetic field strength, so that

the instantaneous radius of curvature of the trajectory decreases

as a function of time. The ion reaches the side of the channel

opposite to that from which it started and begins to fall back

toward the axis. The axial distance required for an ion to

complete one cycle of this periodic motion is called the betatron

wavelength, and is a function of an ion's maximum radial

excursion, or turning point. The larger the turning point of an

ion is, the shorter its the betatron wavelength is. The radial

phase space distribution of the propagating ion beam is

approximately periodic in the propagation distance due to the

periodic nature of the single particle trajectories. Thus, at

intervals of the betatron wavelength, the initial radial phase

space distribution reappears. However, due to the dependence of

the betatron wavelength on the turning point, the periodic

reappearences of the initial distribution are accompanied by a

gradual deformation of that distribution. Ions with larger

turning points lag in phase slightly behind those with smaller

turning points. The eventual outcome of this phase mixing is

that the radial phase space distribution becomes homogenized over

the phase angle in the radial phase space plane. It will be

assumed in this work that the transport channel is sufficiently

long so that the beam becomes completely phase mixed before it

reaches the final focusing cell. The radial phase space

distribution of the fully phase mixed ion beam fills an

elliptical region of the radial phase space plane defined by

r 2 + '.---2 v2 < r2  (4)

(vbJ r c
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where vb is the speed of a beam ion, rc is the transport channel

radius, and k is the betatron wavenumber defined by

k 2M/X 2Ze'c 1/

2 2 2(

where mp is the proton mass, a is the proton charge, and A and Z

are the mass and atomic numbers of the beam ion, respectively.

The distribution of ions inside this elliptical region is

determined by the form of the initial radial phase space

distribution, but this is not a matter of importance in this

analysis. The item of main importance is Eq. (4), which defines

the outer boundary of the phase mixed ion beam distribution in

radial phase space.

Vhen the ion beam reaches the final focusing cell, the

sudden increase in the magnetic field strength and the sudden

change in the magnetic field distribution cause the radial phase

spaca distrlbuZ!Qn of the beas to begin to undergo a deformation.

The exact nature of this deformation is the subject of Section

III. For this discussion, it is not necessary to knov these

details other than that the deformation represents a continuous

change in the originally elliptical boundary of the ion beam

radial phase space distribution characterized by a skewing of the

distribution tovard negative radial velocities. At the exit of

the final focusing cell, the ion beam radial phase space

distribution has been deformed to some nev shape that depends on

the length of the cell, the final focusing cell discharge

current, and the distribution of the magnetic field in the cell.

After passing through the focusing cell, the beam propagates

6



ballistically for some distance before coming to the focal plane.

Between the focusing cell exit and the focal plane, the ion beam

radial phase space distribution continues to deform as individual

ions follow straight line paths defined by constant values of the

radial velocity. The ions that at the focusing cell exit had

radial velocities equal to zero hold a special place in this

process. All other ions either move away from the axis or move

toward the axis, pass through it, then continue to move away from

the axis. The ions that occupied the line vr - 0 at the focusing

cell exit move along lines of constant radius, and because of

that, they define the smallest radius to which the ion beam can

be focused. Thus, as illustrated in Figure 1, the minimum

spotsize that a focusing cell can produce is defined by the

intersection of the line v r - 0 with the outer boundary of the

ion beam radial phase space distribution.

Once the minimum spotsize is known, the next item of

interest is how far downstream from the focusing cell exit the

minimum spotsize is actually achieved. This distance, the focal

length, can be obtained by following the deformation of the ion

beam radial phase space distribution as the ion beam propagates

ballistically. As the ions propagate ballistically, they move

along lit.zs of constant v r so that ions on the line v r = 0 remain

stationary in the radial phase space plane. As illustrated in

Figure 2, the minimum spotsize is achieved when all ions with

negative v r have moved inside the spotsize radius and before any

ion with positive vr has passed beyond this radius. When this

occurs the tangent to the radial phase space boundary curve is

perpendicular to the v r axis at the point where the curve passes

through the vr axis. Thus, the focal length can be defined as

that axial location at which the radial phase space boundary

curve has an infinite slope at the point where it intersects the

vr axis.

7
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As an illustration of these concepts, consider the focusing

of an ion beam with a one-eighth betatron wavelength focusing

lens with the ideal magnetic field distribution. The boundary

curve for the ion beam radial phase space distribution in the

transport channel is given by Eq. (4) as discussed previously.

In the focusing cell, the boundary curve is given by

2 2 2 2 2 2r (y/K) + (K /k - 1)(rsin(Kz) + (y/K)cos(Kz)) . r (6)c

where K is the betatron wavenumber of a beam ion in the focusing

cell (Eq. (5) with Ic replaced by If) and y - vr/vb. To find the

spotsize, Eq. (6) is solved for r r foc under the conditions

y = 0, z - (m/4)/K - A /8. The result is given by Eq. (1). To

obtain the focal length, an equation describing the boundary

curve in the ballistic drift region must be obtained. This is

easily accomplished by substituting r - zvr/vb for r in Eq. (6).

Defining A . (Ifc/I) - I, the boundary curve is given by

((2+4)r2 . [(2+4)z' 2 (2+6)/K 2 - 2az/K]y 2  [2a/K - 2(2+a)z]yr}

. (7)

The next step is to operate through with 8/ar and solve for

ay/ar. Evaluating the resulting expression at y - 0 gives

I -y ~ (2 a)K (8)
ar 1 - (2 .)zK]

8



This expression gives the slope of the curve that defines the

outer boundary of the ion beam radial phase space distribution at

the point where it intersects the v r axis. The value of z at

which this slope goes to -- gives the focal length. By setting

the denominator of the right hand side of Eq. (8) to zero,.the

required value of z is found to be z = Zfoc as given by Eq. (2).

To apply this method to a final focusing cell with a

nonideal magnetic field distribution, it is necessary to have an

expression for the curve that defines the outer boundary of the

ion beam radial phase space distribution. This is the goal of

Section III.

9



III. SOLUTION OF TEM EQUATIONS OF NOTION

In order to apply the method described in Section II for

predicting the spotsize and focal length, an equation describing

the outer boundary of the ion beam's radial phase space

distribution in the final focusing cell must be obtained. The

curve that describes this boundary, which will be called the

boundary curve, is the locus of points that define the radial

phase space positions of ions at the outer edge of the beam

radial phase space distribution. In the absence of collisions,

as the beam travels through the transport channel, focusing cell,

and on out into field free space, ions that were originally on

the boundary curve remain on the boundary curve. Thus, the

manner in which the boundary curve transforms in the focusing

cell can be found by solving the equations of motion for ions in

the focusing cell magnetic field. Eq. (4) gives an expression

for that boundary curve for the ion beam in the transport channel

after phase mixing, and Eq. (6) gives an expression for how that

curve transforms in a focusing cell with the ideal magnetic field

distribution. The goal of this Section is to find a result

analogous to Eq. (6) that is applicable to a focusing cell with

the model nonideal magnetic field distribution
NB,(r) - (2If/crc)x(r/rc) . To illustrate the method used to

obtain that result, a focusing cell with the ideal magnetic field

distribution will be considered first.

The equations of motion for an ion with no angular momentum

in the ideal magnetic field are

d2r
d °r B r z  (9a)
dt2 mc o rc zdt2  c

qBo 2 2

v vb - - (r - r ) (9b)2mcr rtpc

10
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where B is the maximum magnetic field strength in the focusing

cell, vb is the magnitude of the ion's velocity, and rip is the

ion's radial turning point. Eq. (9b) is an expression of the

conservation of the canonical axial momentum. Inserting the

expression for vz given by Eq. (9b) into Eq. (9a) gives a single

nonlinear equation for the ion's radial position as a function of

time. The nonlinearity is a consequence of the variation of v

with r given by Eq. (9b). This nonlinearity is the source of the

dependence of the betatron wavelength on the turning point of an

ion and is therefore important for analyzing the radial phase

space dynamics of an ion beam propagating over distances of many

betatron wavelengths, but for propagation over distances smaller

than a betatron wavelength, such as in the final focusing cell,

it is not important. For the present work this nonlinearity will

be neglected. This gives a linearized radial equation of motion

where vz has been replaced by vb:

d12 (qB0  r 0 , (10)

dz2 vb i. ) rch

where, in addition, time t has been replaced by axial distance z

via t Z/vb. The solution to Eq. (10) is

r(z) - r0cos(Kz) . (y0/K)sin(Kz) (11a)

y(z) = Yocos(Kz) - (ro/rch)sin(Kz) (11b)

where r° = r(O), yo M vr (0)/V b and K is the betatron wavenumber

r b I



of a bean ion in the final focusing cell. The boundary curve at

the entrance of the focusing cell is, from Eq. (4),

r2  (o) 2  = 2

r. (y0/k)2  r (12)o ch (2

Eqs. (1la) and (1lb) can be inverted to give r. and y in terms

of r(z) and y(z). These expressions are then substituted into

Eq. (12) to give the expression for the boundary curve in the

final focusing cell (Eq. (6)).

The mathematical result expressed by Eq. (6) indicates that

in the ideal magnetic field distribution, the boundary curve

undergoes a rigid rotation as the beam moves through the final

focusing cell. This result has a simple physical interpretation.

The change in the radial velocity of an ion as it enters the

final focusing cell is proportional to the magnetic field

strength at the radial position of the ion. Since in the ideal

magnetic field distribution, the magnetic field strength is

proportional to the radius, the change in an ion's radial

velocity is also proportional to its radial position. Thus, over

a short time interval 6t, the change in the radial velocity of an

ion is Avr - -rdt. This, coupled vith the fact that the

accompanying change in the radial position of the ion is

proportional to the ion's radial velocity, i.e. r - vrAt, leads

to the rigid rotation that characterizes the deformation of the

boundary curve in the ideal magnetic field distribution. This

line of thought is useful for anticipating the results that

should be obtained from the analysis of the nonideal magnetic

field distribution. In the nonideal magnetic field, the change

in the radial velocity of an ion is still proportional to the

magnetic field strength at the radial position of the ion, but

12



nov the magnetic field strength is nit simply proportional to the

radial position. Thus, over a short time interval the change in
rN Nan ion's radial velocity is Av r - -(r/r C) A t. For an ion at

small radius, the factor (r/re) can be very small for N > 1 so

that the change in the radial velocity of the ion will be small.

However, an ion located at a radius close to the channel radius

will be subject to nearly the full magnetic field strength, so

that ion will experience a large change in radial velocity. The

change in the radial position of an ion during this small time

interval is still given by Ar - vrAt. Thus, while the horizontal

deflection of an ion in the radial phase space plane is the same

as it was in the ideal cell, the vertical deflection during this

small time interval will be slight at small radii and large at

larger radii. The result should be a sheared rotation, with the

rotation angle being a rapidly increasing function of the initial

radius.

From the discussion above, the procedure for obtaining the

boundary curve is (1) to solve the equations of motion for an ion

in the focusing cell, (2) to invert the solution to give the

initial conditions in terms of the downstream solution, and (3)

to substitute the result of the second step into Eq. (12). For

the ideal magnetic field distribution, this procedure offered

little analytic difficulty because of the very simple form of the

radial equation of motion (Eq. 10). For the nonideal rN magnetic

field distribution however, the radial equation of motion is not
N

so easily solved - it is an equation of the form x'' + x = O.
Fortunately there is a method for generating a series solution to

this equation that suits the requirements of this analysis. That

method will be illustrated first for the case of the ideal

magnetic field distribution, then will be applied to the nonideal

field.

13
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Eq. (10) can be written as a pair of first order

differential equations:

dxds Lly (13a)

x - (13b)
ds L

where x - r/rc , y - Vr /Vb, s - Kz, and Li a 1/Kr c . The subscript

"1" on the quantity L1 refers to the focusing cell. Eqs. (13a)

and (13b) may be considered as the infinitessimal form of a

mapping of the x-y plane into itself - they indicate how, for an

infinitessimal increment in the parameter s, the points x and y

transform. The geometric theory of ordinary differential

equations6 provides a method for building up the global

transformation from the infinitessimal transformation. The

global transformation is an operator known as the Lie transform

which will be denoted here by 0. It is built by an

exponentiation of the infinitessimal transformation. For a

general differential system,

dx
das = f(x,y) (14a)

. g(x,y) (14b)
ds

the operator 0 is defined as

Q x f(x,y) - g(x,y) L (15)

14
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This operator can be applied to any function of x and y to find

how that function changes under the transformation defined by

Eqs. (14a) and (14b). In particular, to obtain x(s), 0 is

applied to the function x, evaluated at s = 0. For Eqs. (13a)

and (13b), the operator 0 takes on the form

Q=exp(LlY -x - x (16)

Using this to obtain x(s) gives

,c(s) = x(O) + LJY(O)s - x(O)t - Lly(O). . .... (17)

This can be recognized as the power series expansion of the exact

solution of Eq. (13a):

x(s) = x(O) cos(s) + Ljy(O) sin(s) (18)

The Lie transform method provides two benefits. First, it

allows a solution of the radial equation of motion to be found.

Of course, in the more general case of a field that behaves as

rN , it may not be possible to find a closed form solution by

recognizing the function represented by the the infinite series

as could be done for the case N - 1, but at least every term of

the series will be known so that as many terms as are considered

to be necessary may be retained. Second, the Lie transform

method works for any function of x and y. This is useful because

rather than findiri expressions for x(s) and y(s) individually,

then inverting those expressions and inserting the results into

Eq. (12), Eq. (12) can be transformed directly by application of

the Lie transform.

15
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For an azimuthal magnetic field of the form

B (r) - Bo(r/rC) N , the radial equations of motion, after dropping

the presently uninteresting vz (r) nonlinearity and

dedimensionalizing as was done for Eqs. (11), are

dx
ds . Lly, (19a)

ds - -xIL (19b)

The operator 0 for this differential system is

Q-exp~s Lly i' - 1X x )] (20)

To test how well this method works, and in particular, to

determine ho many terms in the power series implied by the

exponential function should be'retained, Eq. (20) was used to

compute the trajectory of an ion. Figure 3 shows the trajectory

r(z) for 0 < z < m/K (one half of a betatron wavelength) obtained

from a numerical solution to Eqs. (19a) and (19b) for the case N

- 4, r(O) a rc , Vr(O) = 0. In Figure 4, the relative error

between the numerical solution and the Lie transform solution is

plotted for the range 0 5 z I/4K (one eighth of a betatron

wavelength). The Lie transform solution used terms through the

seventh-order. As can been seen, the Lie transform series

solution is in excellent agreement with the numerical solution,

with the relative error not exceeding 0.01Z. For propagation

distances greater than an eighth of a betatron wavelength, the

relative error grows much larger, as indicated in Figure 5 where

the relative error betveen the numerical solution and the Lie

transform solution is plotted for 0 < z < r/2K (one quarter of a

16



betatron vavelength). For greater propagation distances, the

number of terns that must be retained in the Lie series to obtain

the same degree of accuracy increases, but for the purposes of

this calculation, vhere the propagation distance is limited to

one eighth of a betatron vavelength, seven terms appear to be

adequate.

For the purpose of predicting the spotsize, it is more

convenient to apply the propagation operator Q directly to the

function that defines the radial phase space boundary than to

develop the solutions for the radius and the radial velocity

individually, then combining those results to give the radial

phase space boundary. This function, in terms of the

dimensionless variables introduced above, is is

2 x2 °2 _ 2

a2(xY) X Ly * . 0 (Z)

Here, the subscript "0" on the quantity L. refers to the

dimensionless betatron vavelength in the transport channel. The

ratio R a (Lo/L1 )
2 is equal to the ratio of the Oinal focusing

cell discharge current to the transport channel discharge

current. The transformation of this boundary curve is

illustrated in Figures 6a, 6b, and 6c for N = 2, 4, and 10,

respectively. The deformation of the boundary curve is the

sheared rotation anticipated previously.

In principle, the spotsize is predicted by applying the

propagation operator a to the function o 2(x,y) - r2 , setting the
result equal to zero, evaluating it at y = 0, then solving for x.

Unfortunately, the resulting equation is a high-order polynomial

in x. For example, for N - 2 and retaining terms through the

fourth pover in s gives the equation

17



0 2 + 2 - x 5s4)R -4 s 4 (22)
Osl 45 (XS 3 12

This, being a fifth order polynomial in x, cannot be solved by

elementary means. While one could resort either. to a numerical

solution to Eq. (22) or to retaining fewer terms in the Lie

transform power series, both of which are undesirable

alternatives, neither are necessary because Eq. (22) can be

solved for R, the ratio of currents, as a function of the spot

size. The same situation holds true for any N and for any number

of terms retained in the solution. Thus, while it is not

generally possible to find an expression giving the spotsize as a

function of the current ratio, it is possible in general to find

an expression giving the current ratio as a function of the

spotsize. The information content of the two is identical.

The current ratio necessary for producing a given spotsize

has been obtained for N - 2, 3, ... by the means described above.

The series expressions for p2 (x,y) used for this purpose retained

terms through the sixth order in s. The resulting expression is

S 2 2N 4 x2N  [8N(N3) N-

R(x) 1 4!- ! x2 sxN14) ; [2(N)l).J x2N- (-7 -) - ... 4 "-- ' -(3

s N-14(22N-21 -NxN - +IoN(2(3N-1) + 4(2N-1) * 3(N-1))]x 2 -

At the exit of the one-eighth betatron wavelength final focusing

cell, s = n/4, and x . Xfoc M rfoc/rc. Note that for small

spotsizes, the required current ratio is approximately
N 2R(xfoc) 2 (4/x foc) . Figure 7 displays the ratio 3f current as

a function of spotsize for several different values of N and
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different ranges of R. In this plot the current ratio for N = 1

as determined from Eq. (1) is shown for comparison. These

results show, for example, that to produce a spotsize of (1/2)re,

a current ratio of 7 is needed for N = 1, a ratio of 25.9 is

needed for N . 2, and a ratio of 352.4 is needed for N . 4.

To find the focal length, the developments above are used

to obtain an expression for the slope of the boundary curve at

the spotsize radius. The boundary curve is propagated

ballistically by replacing x with & = x - yZ and s with R/4,

where E . z/r c . The slope of the boundary curve is then found by

differentiating the expression p2(&,y,nI4) - r2 . 0 with respectC

to x, and solving the resulting expression for 3y/3x yielding

a I a& ax (24
ax =  at (24)

A y a y.

Using aS/ax - 1 and SE/ay - -Z, and using the power series

expansion of p2 to evaluate the derivatives of p then gives the

desired expression for the slope of the boundary curve. The

focal length is given by the value of Z at which ay/ax 4 --.

This occurs when the denominator of the right-hand side of Eq.

(24) vanishes. Thus, in general terms, the dimensionless focal

length Zfoc is

tfoc (5

195
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Using the pover series expression for P2 and proceeding as

indicated yields the expression

rfML (f) (RxN-1 _ 1) .(Z) 2 [(N.3xN-l - 4 }2N-2 (26)

3(J 4 [R(4zN-1) - 3(N-1) 2(3N- )x 3N 2  - 2NN32N-1}

( 2 +(1t)2 (2NRx 2N-2 _ (N~l)x N-1) + i(t) 4 (N(N3)x2N-2 _ 2N(3N1)Rx3N-2)+

1 Z) N4-2((N1 3(N-1) + 2(3N-1)Rx 4N-4 _ 2N(N.3)(3NI)x 3N-3]}

In this equation, the spotsize x - xfoc and the current ratio R

must be determined consistently using Eq. (23). The focal length

is plotted in Figure 8 as a function of the spotsize for several

different values of N. In this Figure, the focal length for the

standard N - 1 cell was determined using Eq. (2). For values of

the spotsize that are close to the channel radius, i.e. for x foc

near 1, the behavior of the focal length depends strongly on the

number of terms retained in both the relation between xfoc and R

and in the relation for Efoc indicating that higher order terms

are needed for convergence. However, beam compression ratios

near 1 are not of interest in this work. For the smaller values

of Xfoe which are of interest here, the number of terms retained

in the Lie series is sufficient, allowing the focal lengths to be

resolved with sufficient accuracy.
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IV. Comparison of Theoretical Predictions with Numerical

Simulations

The results of this analysis have been compared with

numerical simulations of intense ion beam focusing. The

simulation code used for this purpose was a simple ion trajectory

solver. The trajectories of a large number (1000 - 5000) of ions

are computed in a given magnetic field distribution. It is

assumed that the ion beam is fully charge and current neutralized

so that self fields can be neglected. It is also assumed that

the magnetic field is static. Figure 9 shows the radial phase

space distribution of 5100 ions at the entrance to the focusing

cell. This distribution was obtained by phase averaging an

initial phase space distribution in a 3 cm, 20 kA transport

channel. The initial radial phase space distribution was a
uniform distribution of ions in the rectangle 0 < r < 2.12 cm and

0 < IVr/vbl < 0.053. Figures lOa and 10b show the ion beam

radial phase space dist-ribution after passing through a focusing

cell with N - 2 and N - 4, respectively. The ratio of the

focusing cell discharge current to the transport channel

discharge current was chosen to be 17, which for the N = 1 cell,

gives a spotsize of (l/3 )rc. From Eq. (25), the spotsize for the

N = 2 cell should be 0.552r and for the N = 4 cell, 0.721r .c c
Figures 11a and llb show the radial phase space distributions for

the N - 2 and N - 4 cells, respectively, after traveling through
field free space to the theoretical focal plane. For the N = 2

cell, Eq. (30) predicts the focal length to be 7.50 cm and for

the N - 4 cell, 5.51 cm. The comparison of the numerical

simulation results with the theoretical predictions show that the

theory accurately predicts the result of the numerical

simulation; the spotsizes and the focal lengths from the code

runs are very close to the theoretical predictions.
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V. Conclusion

The spotsize and focal length of a one eighth betatron

wavelength final focusing cell with the nonideal magnetic field

distribution Be(r) - (2If/rcc)x(r/rC) N have been calculated.

These results indicate that the ratio of final focusing cell

discharge current to transport channel discharge current required

for producing a given focused beam spotsize increases rapidly

with increasing N. The focal length decreases with increasing N

for any given spotsize. The very rapid increase in the current

ratio required to produce a given spotsize with increasing N

given by the approximate relation

If (roc -2N
f - 2 (r IH (27)
c rc)

indicates that to be able to use the one-eighth betatron

wavelength focusing technique without having to use mega-ampere

level final focusing cell discharge currents requires that N be

as close to 1 as possible. This, in turn, indicates the

importance of understanding the development of the magnetic field

in the finid focusing cell.
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r(cm)
Figure 1: Illustration of the general theoretical method for

determining the spotsize of the focused ion beam. Curve (a)

represents the boundary curve at the final focusing cell exit.

As the beam propagates ballistically, the intersection of the

boundary curve with the line vr = 0 does not change. Curves (b),

(c), and (d) represent the boundary curve after ballistic

propagation through distances of Zfoc , 
2zfoc, "nd 4zfoc ,

respectively.
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Ficure 2: Illustration of the general theoretical method for

determining the focal length of the final focusing cell. As the

ion beau leaves the final focusing cell and propagates

ballistically, the tangent to the boundary curve at the

intersection with the vr axis approaches -c. Curve (a)

represents the boundary curve at the final focusing cell exit.

Curves (b) and (c) represent the boundary curve after ballistic

propagation through distances oa'(1/2)znoc ad Zfoc ,

respectively.
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C\i

0.0 32.0 64.0 96.0 128.0 160.0

Figure 3: Trajectory of a beam ion calculated numericaily using

Eqs. (19a) and (19b). The magnetic field exponent N was 4, and

the initial conditions were r(O) - r c, v r(0) - 0. One half of a

betatron oscillation is show. The discharge current was 20 kA,
the channel radius was 3 cm, and the beam ions were 30 MeV Li +3
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z (CM)
Figure 4: The relative error between the numerical solution and

the Lie transform solution over one eighth of a betatron

wavelength. The Lie transform solution used terms through the

seventh order.

27



0

C5,

4-

I. -

0.0 , 12.8 25.6 38.4 51.2 64.0

Z (cm)
Figure 5: The relative error between the numerical solution and

the Lie transform solution over one quarter of a betatron

wavelength. The Lie transform solution used terms through the

seventh ordbr.
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figure 6a: Transformation of the boundary curve for N -2.
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Figure 6b: Transformation of the boundary curve for N = 4.
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Figure 6c: Transformation of the boundary curve for N - 10.

31

d ,mlmm illm m m 9. m 'VJ



0

.o

C\)

N=4
N=N
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Spotsize/Channel Radius

Figure 7: Ratio af discharge currents required to produce a

given spotsize for N - 1, N a 2, and N - 4.
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Figure 8: Focal length for final focusing cells with N =1,

N -2, and N -4.
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Figure 9: Radial phase space distribution at the entrance to the
final focusing cell used for the numerical simulation.

34



1.0-

0.6-

0.2 .
S . ., - .... :.,' =_ :--

,. -0.2... .. '". ;

-0.6-

-1.0-
0.0' 0.6 1.2 1.8 2.4 3.0

r(cm)
Figure 10a: Radial phase space distribution at the final

focusing cell exit obtained from the numerical simulation of an

N - 2 cell. Theory predicts that the intersection between the

boundary curve and the y r axis should occur at 0.552r c
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Figure 10b: Radial phase space distribution at the final
focusing cell exit obtained from the numerical simulation of an

N - 4 cell. Theory predicts that the intersection between the

boundary curve and the v r axis should occur at 0.721r .
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Fio~r. 11a: Radial phase space distribution after 7.50 cm of

ballistic propagation. The theory predicts that at this

location, all ions should be located within the spotsize radius.
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Figure Ilb: Radial phase space distribution after 5.51 cm of

ballistic propagation. The theory predicts that at this

location, all ions should be located within the sporsize radius.
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